All rights reserved

© 2006 International Union of Crystallography

doi:10.1107/S1600536806038098

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Feng Lin,^a* Jun Sun,^b Zhi-Xin Yu^b and Xiao-Hong Zhao^b

^aEditorial Board of Jilin Normal University Journal, Jilin Normal University, Siping 136000, People's Republic of China, and ^bDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: xianfenglin2000@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.041 wR factor = 0.090 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[[(2-phenyl-1*H*-1,3,7,8,-tetraazacyclopenta[*I*]phenanthrene)zinc(II)]- μ_3 -1,3-benzenedicarboxylato]

In the title compound, $[Zn(1,3-BDC)(L)]_n$, where 1,3-BDC is the 1,3-benzenedicarboxylate dianion $(C_8H_4O_4^{2^-})$ and *L* is 2phenyl-1*H*-1,3,7,8,-tetraazacyclopenta[*I*]phenanthrene $(C_{19}H_{12}N_4)$, each Zn^{II} atom is five-coordinated by two N atoms from one *L* ligand, and three O atoms from three 1,3-BDC anions, in a distorted square-based pyramidal geometry. The Zn^{II} atoms are bridged by the 1,3-BDC ligands to form a double-chain structure. N-H···O hydrogen bonds complete the structure.

Comment

Mixed-ligand coordination polymers constructed from dicarboxylate and heteroaromatic N-donor chelating ligands such as 1,10-phenanthroline (phen) and its derivatives are of special interest (Che, 2006; Che *et al.*, 2006). We report here the synthesis and crystal structure of the title compound, (I), which arose from the combination of zinc cations, 1,3-benzenedicarboxylic acid ($C_8H_6O_4$; 1,3-H₂BDC) and 2-phenyl-1*H*-1,3,7,8,-tetraazacyclopenta[*I*]phenanthrene ($C_{19}H_{12}N_4$; *L*). The resulting compound, [Zn(L)(1,3-BDC)]_n, is a one-dimensional polymer.

(I)

n

Received 18 September 2006 Accepted 18 September 2006

metal-organic papers

Figure 1

Part of the polymeric structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry codes: (i) -x, -y, 1 - z; (ii) x, -y, 1 - z.]

Figure 2

View of the double-chain structure in (I). H atoms have been omitted for clarity.

a dimeric building unit containing a ring of eight atoms. The carboxylate C-O bond lengths suggest that the bonding in the C1/O1/O2 group is localized and that in the C8/O3/O4 group is delocalized.

Within a dimeric unit there exist π - π interactions between the phenanthroline groups of adjacent L ligands, the shortest atom-to-atom distance being 3.562 (3) Å. The dimeric units are linked by the 1,3-BDC ligands through the monodentate (C1) carboxylate groups, generating an interesting doublechain structure propagating in [001] (Fig. 2), containing alternating eight-memberered rings (mentioned above) and 16-memberered rings of atoms. Finally, an N-H···O hydrogen bond involving the N atom of L and O2 (the only carboxylate O atom not bonded to Zn) completes the structure of (I) (Table 2).

Experimental

The L ligand was synthesized according to the literature (Steck & Day, 1943). A methanol solution (20 ml) of L (0.5 mmol) was added slowly to an aqueous solution (16 ml) of ZnCl₂·2H₂O (0.5 mmol) and 1,3-H₂BDC (1 mmol) with stirring at 358 K. The resulting solution was filtered, the filtrate was allowed to stand in air at room temperature for one week, and pale-yellow crystals of (I) were obtained (yield 77% based on Zn).

Crystal data

 $[Zn(C_8H_4O_4)(C_{19}H_{12}N_4)]$ Z = 8 $M_r = 525.81$ $D_x = 1.576 \text{ Mg m}^{-3}$ Monoclinic, C2/c Mo $K\alpha$ radiation a = 16.846 (3) Å $\mu = 1.15 \text{ mm}^{-1}$ b = 15.932 (3) Å T = 292 (2) K c = 17.398 (4) Å Block, yellow $\beta = 108.38 \ (3)^{\circ}$ $0.33 \times 0.31 \times 0.29 \text{ mm}$ V = 4431.3 (17) Å³

Data collection

Rigaku R-AXIS RAPID	20760 measured reflections
diffractometer	5026 independent reflections
ω scans	3482 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.065$
(ABSCOR; Higashi, 1995)	$\theta_{\rm max} = 27.5^{\circ}$
$T_{\min} = 0.691, \ T_{\max} = 0.719$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0327P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 4.2485P]
$wR(F^2) = 0.090$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
5026 reflections	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
325 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

C1-O2	1.232 (3)	Zn1-N2	2.136 (2)
C1-O1	1.271 (3)	Zn1-O1	1.9513 (18)
C8-O3	1.247 (3)	Zn1-O3 ⁱ	2.0277 (19)
C8-O4	1.256 (3)	Zn1-O4 ⁱⁱⁱ	2.0067 (19)
Zn1-N1	2.174 (2)		
$O1-Zn1-O4^{iii}$	104.22 (8)	O3 ⁱ -Zn1-N2	149.30 (9)
$O1-Zn1-O3^{i}$	95.25 (8)	O1-Zn1-N1	99.76 (9)
$O4^{iii}$ -Zn1- $O3^{i}$	95.62 (9)	O4 ⁱⁱⁱ -Zn1-N1	155.69 (9)
D1-Zn1-N2	112.15 (9)	O3 ⁱ -Zn1-N1	86.00 (9)
$D4^{iii}$ -Zn1-N2	90.94 (9)	N2-Zn1-N1	76.25 (8)

Symmetry codes: (i) -x, -y, -z + 1; (iii) $x, -y, z + \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3\cdots O2^{iv}$	0.86	1.90	2.756 (3)	170
Symmetry code: (iv)	$-x + \frac{1}{2}, y + \frac{1}{2}, -$	$z + \frac{3}{2}$.		

All H atoms were positioned geometrically (N-H = 0.86 Å andC-H = 0.93 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Data collection, cell refinement and data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); publication material: SHELXL97.

The authors thank Jilin Normal University for supporting this work.

References

Che, G.-B. (2006). Acta Cryst. E62, m1244-m1246.

Che, G.-B., Liu, C.-B., Cui, Y.-C. & Li, C.-B. (2006). Acta Cryst. E62, m1362m1364.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.